Effective grain hygiene and aeration cooling can overcome 75 per cent of pest problems.
When fumigation is needed it must be carried out in pressure-tested, sealed silos.
Monitor stored grain monthly for moisture, temperature and pests.

Prevention is better than cure
The combination of meticulous grain hygiene plus well-managed aeration cooling generally overcomes 75 per cent of storage pest problems.
For grain storage, four key factors provide significant gains for both grain storage pest control and grain quality – hygiene, aeration cooling, correct fumigation and monthly monitoring.

Hygiene
The first grain harvested is often at the greatest risk of early insect infestation due to contamination.
One on-farm test found more than 1000 lesser grain borers in the first 40 litres of wheat passing through the harvester.
Remove grain residues from empty storages and grain handling equipment, including harvesters, field bins, augers and silos to ensure an uncontaminated start for new-season grain.
Clean equipment by blowing or hosing out residues and dust and then consider a structural treatment (see Table 2, page 2).
Bury, use or burn any grain left in hoppers and bags from the grain storage site so it doesn’t provide a habitat for pests during the off season.

Aeration cooling
Freshly-harvested grain usually has a temperature around 30°C, which is an ideal breeding temperature for storage pests (see Table 1).
Studies have shown that rust-red flour beetles stop breeding at 20°C, lesser grain borer at 18°C and below 15°C all storage pests stop breeding.

TABLE 1 THE EFFECT OF GRAIN TEMPERATURE AND MOISTURE ON STORED GRAIN INSECT AND MOULD DEVELOPMENT

<table>
<thead>
<tr>
<th>GRAIN TEMPERATURE (°C)</th>
<th>INSECT AND MOULD DEVELOPMENT</th>
<th>GRAIN MOISTURE CONTENT (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40-55</td>
<td>Seed damage occurs, reducing viability</td>
<td>&gt;18</td>
</tr>
<tr>
<td>30-40</td>
<td>Mould and insects are prolific</td>
<td>13-18</td>
</tr>
<tr>
<td>25-30</td>
<td>Mould and insects active</td>
<td>10-13</td>
</tr>
<tr>
<td>20-25</td>
<td>Mould development is limited</td>
<td>9</td>
</tr>
<tr>
<td>18-20</td>
<td>Young insects stop developing</td>
<td>&lt;8</td>
</tr>
<tr>
<td>&lt;15</td>
<td>Most insects stop reproducing, mould stops developing</td>
<td>&lt;8</td>
</tr>
</tbody>
</table>

Source: Kondinin Group
Aim for grain temperatures of less than 23°C during summer and less than 15°C during winter.

When placing grain into storage, run aeration fans continuously for the first 3-4 days to push the first cooling front through the grain and to create uniform moisture conditions.

Then run the fans during the coolest 9-12 hours per day for the next 5-7 days. This will push a second cooling front through the grain bulk.

Aeration cooling generally only requires air-flow rates of 2-4 litres per second per tonne.

Finally the grain requires approximately 50 hours of appropriate quality air each fortnight during storage.

Use an aeration controller that will perform the cooling process at the right time and continue to aerate the grain selecting the coolest air to run fans.

An effective aeration controller will also ensure fans don’t operate when the relative humidity is higher than 85 per cent, which can re-wet and damage grain if operated for extended periods.

### Chemical control

Fumigation with phosphine is a common component of many integrated pest control strategies.

Taking fumigation shortcuts may kill enough adult insects in grain so it passes delivery standards, but the repercussions of such practices are detrimental to the grains industry.

Poor fumigation techniques fail to kill pests at all life cycle stages, so while some adults may die, grain will soon be reinfested again as soon as larvae and eggs develop.

What’s worse, every time a poor fumigation is carried out, insects with some resistance survive, making the chemical less effective in the future.

### Effective fumigation

Using the right type of storage is the first and most important step towards an effective fumigation.

Only use fumigants, like phosphine, in a pressure-tested, sealed silo.

---

**TABLE 2 CEREAL GRAINS ONLY – RESISTANCE AND EFFICACY GUIDE FOR STORED GRAIN INSECTS 2014 (NORTHERN AND SOUTHERN GRAIN PRODUCTION REGIONS).**

**BEFORE APPLYING – CHECK WITH YOUR GRAIN BUYERS / BULK HANDLERS AND READ LABELS CAREFULLY**

<table>
<thead>
<tr>
<th>TREATMENTS</th>
<th>WHP (DAYS)</th>
<th>LESSER GRAIN BORER (Rhyzopertha dominica)</th>
<th>RUST-RED FLOUR BEETLE (Tribolium castaneum)</th>
<th>RICE WEEVIL (Sitophilus oryzae)</th>
<th>SAW-TOOTHED GRAIN BEETLE (Oryzaephilus surinamensis)</th>
<th>FLAT GRAIN BEETLE (Cryptolestes ferrugineus)</th>
<th>PSOCIDS (booklice) (Order Psocoptera)</th>
<th>STRUCTURAL TREATMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphine (eg Fumitoxin®)</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfuryl fluoride (eg ProFume®)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primiphos-methyl (eg Actellic 900®)</td>
<td>nil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fenitrothion (eg Fenitrothion 1000®)</td>
<td>1–90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorpyrifos-methyl (eg Reldan Grain Protector®)</td>
<td>nil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>‘Combined products’ (eg Reldan Plus IGR Grain Protector®)</td>
<td>nil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deltamethrin (eg K-Obiol®)</td>
<td>nil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spinosad, s-methoprene &amp; Chlorpyrifos-methyl (eg Conserve On-Farm®)</td>
<td>nil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diatomaceous earth, amorphous silica – effective internal structural treatment for storages and equipment. Specific use grain treatments.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diatomaceous earth, amorphous silica (eg Dryacide®)</td>
<td>nil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**KEY**

- **WHP** Withholding Period 
- Not registered for this pest 
- Resistant species likely to survive this structural treatment for storage and equipment 
- Strong phosphine-resistant strains of rusty grain beetle (Cryptolestes ferrugineus, also known as flat grain beetles) have been identified in some locations. 
- Resistance widespread (unlikely to be effective) 
- Effective control

1 Not effective in unsealed storages and selects for resistance. 2 When used as directed on label. 3 Total of (exposure + ventilation + withholding) = 10 to 27 days. 4 Nufarm label only. 5 Stored grains except malting barley and rice/ stored lupins registration for Victoria only/ not on stored maize destined for export. 6 When applied as directed, do not move treated grain for 24 hours. 7 Registered for use on cereal grain. 8 Do not use on stored maize destined for export, or on grain delivered to bulk-handling authorities. 9 Registered for use on cereal grains except maize, malting barley and rice. 10 Restricted to licensed fumigators or approved users.

Source: Registration information courtesy of Pestgenie, APVMA and InfoPest (DAF) websites
Research shows that fumigating in a storage that is anything less than pressure sealed doesn’t achieve a high enough concentration of fumigant for a long enough period to kill pests at all life cycle stages.

For effective phosphine fumigation, a minimum of 300 parts per million (ppm) gas concentration for seven days or 200ppm for 10 days is required. Fumigation trials in silos with small leaks demonstrated that phosphine levels are as low as 3ppm close to the leaks. The rest of the silo also suffers from reduced gas levels.

Achieve effective fumigation by placing the correct phosphine rates (as directed on the label) onto a tray and hanging it in the top of a pressure-tested, sealed silo or into a ground-level application system if the silo is fitted with recirculation.

After fumigation, ventilate grain for a minimum of one day with aeration fans running, or five days if no fans are fitted. A minimum withholding period of two days is required after ventilation before grain can be used for human consumption or stock feed.

Achieve effective fumigation by placing the correct phosphine rates (as directed on the label) onto a tray and hanging it in the top of a pressure-tested, sealed silo or into a ground-level application system if the silo is fitted with recirculation.

After fumigation, ventilate grain for a minimum of one day with aeration fans running, or five days if no fans are fitted. A minimum withholding period of two days is required after ventilation before grain can be used for human consumption or stock feed.

As a general rule, only keep a silo sealed while carrying out the fumigation (for example, one to two weeks).

After fumigation has been completed, return to aeration cooling to hold the stored grain at a suitable temperature level.

Check regularly:
Monitor stored grain at least monthly, including sampling from the top of the storage, if it can be done safely, or with a pitfall trap.

Monitoring
When grain is put into storage it needs monitoring, just like it does when it’s in the paddock – regularly.
Check stored grain at least monthly, taking samples from the bottom, and if safe, the top of the storage.
Things to monitor and record:
- Insect pests
- Grain temperature
- Grain moisture content
- Grain quality and germination

Storage choices
When buying a new silo, buy a quality, sealable silo fitted with aeration and check with the manufacturer that it meets the Australian Standard for sealable silos (AS2628).
Experience has shown that at least two sealable, aerated silos on farm provide the option for an effective fumigation and delivery program.

Many older silos are not designed to be sealed and cannot be used for fumigation, however retro-fitting aeration can reduce insect multiplication through grain cooling.

STORAGE AND TREATMENT NOTES

Cereal grains delivered to customer

Buyers and bulk handlers are changing their acceptance of grain treated with insecticides.
Before using a grain insecticide, always check with potential buyers and bulk handlers (depot) for market acceptability. Identify storage pests before selecting a treatment. Always follow label instructions carefully.

Seed held on farm (cereals — wheat, barley, oats)

Seed that is dry, cool and sound (not weather damaged) will remain viable for longer.

In well-managed storage, germination percentages can be expected to decrease by only 5 per cent after six months. To achieve this, keep grain moisture content below 12 per cent.
Grain temperature also has a major impact on germination.
Aim for grain temperatures of 20°C and below in seed storage by using aeration cooling (with auto control).
Wheat at 12 per cent moisture content stored at 30-35°C (unaerated grain temperature) will reduce germination percentage and seedling vigour.
Position small seed silos in the shade or paint them reflective white to assist in keeping grain cool.
Treating seed with a grain protectant in combination with aeration cooling will maximise insect control.

Pulse and oilseeds

Insect control options are limited for stored pulses and oilseeds.
Grain protectants are not registered for use on these grains. Phosphine fumigation and controlled atmosphere (inert gasses such as carbon dioxide or nitrogen) may be an option.
The effectiveness of phosphine fumigation on oilseeds can be reduced due to phosphine sorption during treatment.
Use sound grain hygiene in combination with aeration cooling to reduce insect activity. Small seed-size grains like canola may need larger capacity aeration fans on stores.
Always store these grains at their recommended grain moisture content level.
PHOSPHINE RESISTANCE IS WIDESPREAD – PLAN, MONITOR AND CONTROL FOR CLEAN GRAIN

- Dispose of grain residues and seed gradings. Clean empty storages and grain handling equipment, including harvesters, field bins and augers.
- Sieve stored grain for the presence of insects at least monthly, or use pitfall traps. Also check grain temperature and moisture.
- If grain temperature has been kept below 20°C by aeration, live insect numbers are likely to be low.
- Sample grain three weeks before sale to allow time for any treatment.
- For effective fumigations, pressure test sealable silos at least once a year to identify any leaks and ensure rubber seals are maintained. Keep monthly storage records of pests found and any fumigation or chemical treatments.

- Phosphine fumigation typically requires 7 to 10 days in a gas-tight sealed silo. When completed, open silo top with care, ventilate using aeration fan for one day; if not aerated, open silo top and ventilate for five days. The minimum withholding period is then two days, after ventilation is completed. The total time needed for fumigation is therefore 10–17 days.
- Sieve a half-litre sample onto a white tray. Hold tray in sunlight to warm for 10 to 15 seconds to encourage insect movement.
- If live insects are found, identify them. Select the appropriate treatment for the grain type and insect. Check labels.
- Take care when climbing silos to sample grain for insects and wear a safety harness. Sample from the base, and if safe, take a sample from the surface of the grain.

- Phosphine fumigation typically requires 7 to 10 days in a gas-tight sealed silo. When completed, open silo top with care, ventilate using aeration fan for one day; if not aerated, open silo top and ventilate for five days. The minimum withholding period is then two days, after ventilation is completed. The total time needed for fumigation is therefore 10–17 days.
- Sieve a half-litre sample onto a white tray. Hold tray in sunlight to warm for 10 to 15 seconds to encourage insect movement.
- If live insects are found, identify them. Select the appropriate treatment for the grain type and insect. Check labels.
- Take care when climbing silos to sample grain for insects and wear a safety harness. Sample from the base, and if safe, take a sample from the surface of the grain.

FIGURE 1 PHOSPHINE RESISTANCE – NATIONAL SITUATION

Source: DAFWA

Useful resources

- GRDC Grain storage extension project
  www.storedgrain.com.au
- Grain Trade Australia
  02 9235 2155
  www.graintrade.org.au
- Graintec Scientific Pty Ltd
  07 4638 7666
  www.graintec.com.au

GRAND PROJECT CODE

PRB00001